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Nyquist - Rate A/D Converters 

⚫ ADCs can be roughly divided into three categories

⚫ Popular around: (1) Before 1990

(2) 1990~2005

(3) 2005~2015

(4) After 2015
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Integrating ADC (or Dual-Slope ADC)

⚫ A popular approach for realizing high-accuracy data conversion on very 

slow-moving signals

⚫ Very low offset error

Very low gain error

Highly linear

Small amount of circuitry required

⚫ Simplified diagram
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Conversion is performed in two phases

⚫ Phase 

◆ It’s a fixed time interval of length T1

T1=2NTclk where Tclk is the period for one clock cycle

◆ S1 is connected to –Vin such that Vx ramps up proportional to the 

magnitude of Vin

◆ At the beginning, Vx is reset to zero by S2

◆ At the end of phase   ,
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Phase

◆ A variable amount of time, T2

◆ At the beginning, counter is reset and S1 is connected to Vref , 

resulting in a constant slope for the decaying voltage at Vx

◆ The counter simply counts until Vx is less than zero
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Assuming the digital output count is normalized so that the largest count 

is unity, the counter output Bout, can be defined to be 

Bout = b12
-1 + b22

-2 + … + bN2-N

and we have

T2 = 2NBoutTclk = (b12
N-1 + b22

N-2 + … +bN ) Tclk

Since Vx(t) = 0, when t = T1 + T2

⚫ From the above equations, the digital output does not depend on the

time constant, R1C1. R1 and C1 should be chosen such that a reasonable

large peak value of Vx is obtained without clipping to reduce noise

effects.
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ For a single-slope conversion, gain error occurs and is a function of 

R1C1.

⚫ To increase resolution and speed, multi-slope conversion can be used.
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Offset error and gain error can be calibrated

(very important mostly in DC measurement )

◆ Measure zero input first , then memorize its digital output, Bx

◆ Measure full-scale DC signal, then memorize its digital output, By

Gain error = (By – Bx) – (2N – 1) 

◆ Final calibrated output 

⚫ Quite slow

2‧2N clocks are required (worse case), e.g. for a 16-bit converter with a 

clock frequency equal to1MHz, the worst-case conversion time is 

around 7.6Hz.
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Effective input filter with sinc function

◆ By a careful choice for T1, certain frequency components 

superimposed on the input signal can be significantly attenuated

◆ If  Vin(t) = Vincos(2πft), where Vin are arbitrary magnitude

◆ Filter transfer function 
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Integrating ADC (or Dual-Slope ADC) (Cont.)

⚫ Example

◆ Filter out power line noise, especially 60Hz

➢ T1 is equal to an integer of 16.67ms.

➢ 60Hz, 120Hz, 180Hz, …… are suppressed.
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Successive Approximation (SA) ADC

⚫ Reasonably quick conversion time 

Moderate circuit complexity

⚫ Binary search to determine 

the closest digital word to 

match analog input, N clock 

cycles to complete an N-bit 

conversion

⚫ A 3-bit unipolar example
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Successive Approximation (SA) ADC (Cont.)

⚫ Flow graph for SA ADC 

◆ Unipolar example : Input range : 0 ~ Vref
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Modified Successive Approximation (SA) ADC

⚫ Flow graph modified from that in p.12-11

◆ No need for a separate DAC

S/H, DAC, and difference portion of 

the comparator are all combined into

a single circuit.

➢ The error V equals the

difference between input Vin

and DAC output.

➢ V is always compared to ground.

➢ Charge-redistribution MOSFET

ADC is one of the first

switched-capacitor ADC using

this approach.

◆ Also called charge redistribution SA ADC
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Charge Redistribution SA ADC 

⚫ Example : A 5-bit ADC

◆ 3 operational modes

➢ Sample mode

Comparator is reset though S2. All capacitors are charged to Vin, 

which performs S/H

S2
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C

b5

Charge Redistribution SA ADC (Cont.)

➢ Hold mode

Comparator is taken out of reset.

All capacitors are switched to ground.

Vx：-Vin

Vin is held on the capacitor array

-

+C4C 2C16C 8C

b1
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Charge Redistribution SA ADC (Cont.)

➢ Bit cycling

The largest capacitor is switched to Vref
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➢ Bit cycling (Assume b1 is already determined to be 1)

The second largest capacitor is switched to Vref

Charge Redistribution SA ADC (Cont.)
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Charge Redistribution SA ADC (Cont.)

➢ Bit-cycling (3-bit example)
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⚫ To get an exact division by two, an additional unit capacitor is added so 

that the total capacitance is 2NC rather than (2N-1)C

⚫ Capacitor bottom plates should be connected to Vref side, not to 

comparator side, to minimize parasitic capacitance at node Vx. Although 

parasitic capacitance at Vx does not cause any conversion errors with 

an ideal comparator, it does attenuate Vx.

Charge Redistribution SA ADC (Cont.)
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Resistor-Capacitor Hybrid ADC

⚫ Combination of resistor-string and capacitor array

⚫ Operation

◆ Charge all the capacitor to Vin while the comparator is reset

-

+

Vref

C2 1K− 2C C C

AS

BS

Vin
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Resistor-Capacitor Hybrid ADC (Cont.)

◆ Successive-approximation conversion is performed to find the two 

adjacent resistor nodes that have voltages larger and smaller than 

Vin. One bus will be connected to one node while the other is 

connected to the other node.

◆ All of the capacitors are connected to the bus having the lower 

voltage.

◆ SA using the capacitor-array network

➢ Starting with the largest capacitor, a capacitor is switched to the 

adjacent resistor-string node having a larger voltage. 

➢ If the comparator output is a 1, it is switched back and is a 0. 

Otherwise, the switch is left as is and is a 1.
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Charge-Redistribution with Error Correction

⚫ Best component matching accuracy is about 0.1%

◆ SA converter without calibration can have up to 10-bit accuracy.

◆ SA converter with error-correction techniques can have up to 16-bit 

accuracy.

⚫ Example : 16-bit

◆ 10 bit MSBs using binary-weighted capacitors.

◆ 6 bit LSBs (referred to as sub-dac) using

➢ An additional capacitor and

➢ A resistor string

No correction terms are measured for the resistor sub-dac; It’s   

accuracy is not critical since it only determined the LSBs.
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Charge-Redistribution with Error Correction (Cont.)

◆ The MSB capacitor array is not inherently monotonic but can be 

easily auto calibrated at start-up by adding a second resistor string 

(referred to as cal-dac)

-
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Charge-Redistribution with Error Correction (Cont.)

⚫ Calibration

◆ Measuring the errors of each capacitor, starting with the largest 

capacitor, calculating the correction terms required, and then storing 

in a data register as DVei.

◆ During a regular SA operation, whenever a particular capacitor is 

used, its error is cancelled by adding the value stored in the data 

register to that stored in an accumulator register, which contains the 

sum of the correction terms for all of the other capacitors currently 

connected to Vref.
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Speed Estimate for Charge-Redistribution ADC

⚫ The major limitation on speed is due to the RC time constants of the 

capacitor array and switches

⚫ Simplified model

⚫ Open-circuit time constant

◆ For better than 0.5LSB accuracy

➢ 30％ higher than actual value

➢ Circuit simulation for the ADC is required to obtain real speed

C)2RR(Rτ N

s2s1eq ++

eqeq

1N

T

)1N(69.0)2ln()1N(T

2

1
e eq

+=+


+



−

R

Vin

C2 1N− C2 2N− C2 C C

R R R

Rs1

Rs2

R



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan                                                                 郭泰豪, Analog IC Design, 202312-26

Flash(or parallel)ADC

⚫ Very-high-speed approach, especially popular in 1980s.

⚫ Large area and power hungry.

◆ 2N comparators

◆ 2N reference voltages, Vr1, Vr2, ….,generated by a resistor string

⚫ Thermometer code at comparator outputs

◆ 2N-1 NAND gates to detect the transition of the comparator output 

from 1s to 0s.

➢ The NAND gate that detects a transition will have a 0 output.

➢ All other NAND-gate output will be 1

◆ Bubble error occurs if more than one 0 output is obtained
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Flash(or parallel)ADC (Cont.)

⚫ Vr5 < Vin < Vr6
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Flash(or parallel)ADC (Cont.)

⚫ CMOS example using clocked comparator

◆ Its inverts as a single stage OPAMP with only one pole

Resistor string

Latch

CMOS 

inverter
To decoding

logicVri

Vin

C
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Flash(or parallel)ADC (Cont.)

⚫ Two operation phases

◆ Autozero (   =1) with the inverter set to its threshold, Vinv, the other 

side of C is charge to Vri

◆ Signal sampling & conversion (   =0)

(Vin-Vri) determines the polarity of the inverter output

Vri

Vinv

Vri - Vinv

Vin

Vri-Vinv

Vin-(Vri -Vinv)=(Vin-Vri)+Vinv
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Flash(or parallel)ADC (Cont.)

⚫ This simple comparator suffers from poor power supply rejection. Fully 

differential inverter helps alleviate this shortcoming.

⚫ The inverter gain must be large enough to amplify (Vin-Vri) to ViH and ViL

of its succeeding latches. Usually, gain＝25～100 for 8-bit resolution. 

Most often, 2 cascade inverters are used to optimize speed. Each has a 

gain of 5~10. Inverters are autozeroed individually, as detailedly

described in chapter 7: comparators
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Issues in Designing Flash ADC

⚫ Large input capacitive load

◆ Large number of comparators connected to Vin

◆ Often limit the speed

◆ Usually requires a strong and power hungry 

buffer to drive Vin

◆ Can be used by using other structures, e.g.

two-step, interpolating, pipeline,….etc.

⚫ Resistor string bowing

◆ Input currents of bipolar comparator currents 

required to charge C during autozero phase of 

clocked CMOS comparators

◆ Errors are greatest at the center node of the 

resistor string

◆ Considerable improvement obtained forcing 

the center tap voltage to be correct. However, 

more voltage references are required.

0

Vref

ideal

actual

Position in the 

resistor string

Position in the 

resistor string

Vref

0
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Issues in Designing Flash ADC (Cont.)

⚫ Comparator Latch-to-Track delay

◆ Especially when a small input signal of the opposite polarity from the 

previous period is present

◆ Can be minimized by keeping the time constants of the internal 

nodes of  the latch as small as possible. This is sometimes achieved 

by keeping the gain of the latches small, e.g. 2~4

◆ Differential internal nodes might be stored together temporarily just 

after latch time.   
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Issues in Designing Flash ADC (Cont.)

⚫ Signal and/or clock delay

◆ Even very small differences in the arrival of clock or input signals at 

the different comparators can cause errors.

e.g. An 8-bit ADC with Vref=2V.

For a 250MHz 1V peak-to-peak input(sinusoid), it takes

5ps to change 1 LSB which is about the same time for a signal to

propagate 500μm in metal interconnect.

If there is  clock skew between comparators greater than this, the

converter will have more than 1 LSB error.

◆ To reduce this error

➢ Using S/H

However, high-speed S/H can be more difficult to realize than

the flash converter itself.

➢ The clock and Vin should be routed together with the delay 

matched. However, delay differences could also be caused by 

different capacitive loads, or by phase differences between the 

comparator preamplifiers at high frequencies.
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Issues in Designing Flash ADC (Cont.)

⚫ Substrate and power supply noise

◆ 7.8mV of noise injection would cause a 1LSB error for an 8-bit 

convertor with Vref = 2V.    

On an IC having a clock signal in the hundreds of MHz, it is difficult 

to keep power-supply noise below a few tens of a volt.                                

◆ To reduce this effect

➢ Running differential clocks closely together will help prevent the 

signals from being coupled into the substrate or through the air.

➢ Analog power supplies should be separated from digital power 

supplies including having analog power to the comparator 

preamps while using digital power to the latch stages.

➢ On-chip power-supply bypassing is a necessity make sure the 

power-supply bypassing circuitry doesn’t form a resonant circuit 

with the bonding wire.
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Issues in Designing Flash ADC (Cont.)

⚫ Bubble error removal

◆ Error due to comparator metastability, noise, cross talk, limited 

bandwidth, …,etc.

◆ Bubble examples
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Issues in Designing Flash ADC (Cont.)

◆ Can be removed using 3-bit NAND gates if bubbles occur near the 

transition point of the thermometer code.

◆ Distant bubble errors can also be reduced using other approaches in 

p.676~p.677 of textbook.

inV
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N digital 

outputs
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encoder

)12( N −

riV
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Issues in Designing Flash ADC (Cont.)

⚫ Flashback

◆ Caused by latched comparators when they are switched from track 

to latch mode.

◆ Charge glitch at the inputs of the latch.

◆ If there is no preamplifier, this will cause major errors due to the 

unmatched impedance at the comparator inputs.

◆ To minimize this effect, most modern comparators have one or two 

stages of continuous-time buffering and/or preamplification.
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Interpolating ADC

⚫ Compared to flash ADC

◆ Lower input capacitance

◆ Slightly reduced power

◆ Lower number of reference voltages needed

⚫ Use of input amplifiers

◆ These amplifiers behave as linear amplifier near their theshold

voltages but are allowed to saturate once their differential input 

become moderately large.

◆ The number of input amplifiers attached to Vin is significantly 

reduced by interpolating between adjacent outputs of these 

amplifiers.
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Interpolating ADC (Cont.)

⚫ Example: 4-bit

◆ The input amplifiers have a maximum gain of 10

➢ logic level = 0V, 5V

latch threshold ≈ 2.5V

voltage difference between adjacent nodes of resistor-string 

= 0.25V

➢

◆ For good linearity, the interpolated signals need only cross the latch 

threshold at correct points, while the rest of the interpolated signals 

response are of secondary importance.

10
V25.0

V5.2
gain =
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Vref=1V

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

-
+

-
+

-
+

-
+

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

Digital

Logic

b1

b2

b3

b4

Vin

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

V1

V2

V3

V4

R

R

R

R

0.75V

0.5V

0.25V

Input

amplifiers

(Overflow)

Latch

comparators

Interpolating ADC (Cont.)

V2c

V2b

V2a
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Interpolating ADC (Cont.)

⚫ Linear region corresponds to 0.25V < Vin < 0.5V for the bottom linear 

amplifier

0

0.25 0.5 0.75 1.0

V1,,V2a,V2b,V2c,V2

V1

V2a

V2b

V2

V2c

Latch threshold(Volts)

(Volts)

Vin

5.0

0
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⚫ Delay times equalization

◆ Delays can be made nearly equal by adding extra series resistors 

such that the impedances seen by each latch looking into the 

resistor string, assuming the input-amplifier outputs are low 

impedance.

⚫ Other implementation methods               

◆ Interpolating using current mirrors or capacitors

Interpolating ADC(Cont.)

⚫ Delay times equalization

◆ Delays can be made nearly equal by adding extra series resistors 

such that the impedances seen by each latch looking into the 

resistor string, assuming the input-amplifier outputs are low 

impedance.

⚫ Other implementation methods               

◆ Interpolating using current mirrors or capacitors

-
+

latch
R

latch
R

latch

R/4

latch
R/4

latch

-
+0.5V

0.25V

8

7

6

5

4

Vin

V2

V1

R

R

R

R

RC

R
4

3
R3//RRout ==

RC

RC
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Folding ADC 

⚫ Heavy input load (similar to flash and heavier than interpolating)

⚫ Reduced number of latch comparators(compared to flash and 

interpolating)

⚫ Example1

◆ Two-folded curve generation

Vin

Vref1 Vref2

IR,Vout(f)

VDD

VDD-IRR

Vout(+)

RI

R

VDD

R

refR

I2
I1

Vout(-)

Vin
I

I

Vref2

Vref1
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◆ Multi-folded curve generation

Folding ADC (Cont.)

N
IR,Vout(f)

Vin

RI

I

I

I

Vout(+)Vout(-)

R

R

VrefN

Vref2

Vref1

Vin 2

1

LOAD
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Folding ADC (Cont.)

Vin

Before Comparator

After Comparator

G1

G2

G3

G4

◆ Gray coded curves
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Folding ADC (Cont.)

⚫ Gray to binary converter

The relation between a Gray code and a binary code

B1=G1

B2=G2         B1

Bn=Gn         Bn-1

Gn is Gray bit and 

Bn is binary bit

is exclusive or

G1

G2

G3

G4

B1

B2

B3

B4

CK

CK

CK

CK

CK

CK

CK

CK
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Folding ADC (Cont.)

⚫ Some Important Points of Folding ADC

◆ Output signal from a folding block is at a much higher frequency 

than the input signal.

Frequency of folding curve = Input frequency x Folding rate

This multiplying effect limits the practical folding rate used in high 

frequency converters.

◆ Differential circuits are almost always used in practical 

implementation.
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Multiplying DAC (MDAC)

⚫ Fully-differential circuits are normally used

(For simplicity, a single-ended circuit is used here)

⚫ Operational principle (two phases)

◆ Sampling phase : sample the Vi with Cs and Cf

Vi

Cs

Cf

Idle

Cs

Cf

i

f

S
o V)

C

C
1(V +=

= fS CC If

Vo Vo

Vo =2Vi
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Multiplying DAC (MDAC) (Cont.)

◆ Amplify phase :

➢ The accuracy of gain depends on capacitor matching

Vi+1 = ൞
1 +

Cs

Cf
⋅ Vi + Vref

Cs

Cf
; b = 0

1 +
Cs

Cf
⋅ Vi − Vref

Cs

Cf
; b = 1

Cs=Cf
Vi+1 =

2 ⋅ Vi − −
1

2
Vref ; b = 0

2 ⋅ Vi − +
1

2
Vref ; b = 1

Cs

b=1

b=0
Vi+1

+Vref 

- Vref 

fC
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Capacitor Ratio-Independent Multiplication 

⚫ Accurate multiply-by-two gain amplifier: 

◆ Does not rely on any capacitor matching

◆ Four clock cycles are required

⚫ Operational principle (four phases)

◆ Phase 1: Sample remainder and

cancel input-offset voltage

◆ Phase 3: Sample input signal with C1

again, after storing Q1 on C2

◆ Phase 2: Transfer charge Q1 from 

C1 to C2

◆ Phase 4: Combine Q1 and Q2 on C1,  

and connect C1 to output

C2

C1

Vi -Vos

-Vos

Vos

Q1

Vi

Vi+1
+  -

C2

C1

Vi

-Vos

Vi -Vos

Q1

C1

C2

Vos

Vi+1
+  -

C2

C1

Vi

Vi -Vos

Vi -Vos
C1

C2

+  -Vos

Q2
Vi+1

C2

C1

Vi

-Vos

=2Vi

+  -Vos

i2 -VosV

Vi+1
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Two-Step (or Subranging) ADC

⚫ Compared to flash ADC

◆ Less area

◆ Less power

◆ Less input capacitive loading

◆ The voltages of comparators need to resolve are less stringent

◆ Larger latency

◆ Can’t realize very high speed due to the use of S/H
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Two-Step (or Subranging) ADC (Cont.)

⚫ 8-bit example

◆ The  4-bit MSB A/D determines the first four MSBs

◆ To determine the remaining LSBs

➢ The quantization error, Vq, of the MSB A/D is further converted.

➢ Vq is multiplied by 16 to ease circuit requirements for finding 

LSBs.

➢ The LSBs are determined using the 4-bit LSB A/D

◆ This straightforward approach would require all components  to be at 

least 8-bit accurate. To significantly ease the accuracy requirements 

of the 4-bit MSB A/D, digital error correction is commonly used.

4-bit

MSB

A/D

4-bit

D/A
+ 16

4-bit

LSB

A/D
Vin

First 4 bits

(b1,b2,b3,b4)

Lower 4 bits

(b5,b6,b7,b8)

Gain Amp
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Two-Step (or Subranging) ADC (Cont.)

⚫ Example using digital error  correction

S/H2

4-bit

D/A

4-bit

MSB

A/D

Error

correction

5-bit

LSB

A/D

+ 8 S/H3S/H1

(8-bit accurate)

(4-bit accurate)(8-bit accurate) (8-bit accurate)

(5-bit accurate)

5-bitsDigital delay

4 bits

8 bits

(5-bit accurate)

Vin

V1
Vq

_Vin

Gain amp
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Two-Step (or Subranging) ADC (Cont.)

⚫ Signal is pipelined

◆ Need more S/H to maintain high speed

◆ Speed is halved if only one S/H is used

⚫ With error correction, relaxed circuit accuracy of internal ADCs and gain 

stage

⚫ Accuracy required for each block is shown in the figure above (The 

reasons are included in p.679~p.680 of the textbook)
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Error Correction Example of Two-Step ADC 

⚫ 2-bit MSB + 2-bit LSB 

◆ MSB is resolved correctly

➢ MSB+LSB → 1000

➢ Correct

◆ MSB is resolved wrongly

➢ MSB+LSB → 0111

➢ Wrong

MSB=10

0V

1V

0.52V

00

01

10 (Correct)

11

0.25V

0.5V

0.75V

LSB=00

0.5V

0.75V

0.625V

0.6875V

0.5625V
00

01

10

11

0.52V

MSB=01

0V

1V

0.52V

00

01 (Wrong)

10

11

0.25V

0.5V

0.75V

LSB=11

0.25V

0.5V

0.375V

0.4375V

0.3125V
00

01

10

11

0.52V
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Error Correction Example of Two-Step ADC (Cont.)

⚫ 2-bit MSB + 3-bit LSB (including 1-bit error correction)

◆ MSB is resolved correctly

➢ MSB+LSB → 1000

➢ Correct

MSB: 10

LSB:    000

1000

0V

1V

00

10

11

0.25V

0.5V

0.75V

5V

V

V

V

V
001

010

011

111

100

(2's complement of -1)
MSB=10

01 

V

V

0.52V
(Correct)

0.375V

V

110 (2's complement of -2)

LSB=000

111

0. V000 52

0.875

0.8125

0.75

0.6875

0.625

56250.

0.

0.4375

Input voltage

= 0.52V 
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Error Correction Example of Two-Step ADC (Cont.)

⚫ 2-bit MSB + 3-bit LSB (including 1-bit error correction)

◆ MSB is resolved wrongly

➢ MSB+LSB → 1000

➢ Still correct

MSB: 01

LSB:    100

1000

0V

1V

0.52V

00

10

11

0.25V

0.5V

0.75V

LSB=100

0.25V

0.50V

0.375V

0.4375V

0.3125V
000

001

010

011

0.52V

110

111

100

101

(2's complement of -1)

(2's complement of -2)

MSB=01

01 (Wrong)

0.625V

0.5625V

0.125V

0.1875V

Input voltage

= 0.52V 
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Error Correction Example of Two-Step ADC (Cont.)

⚫ 2-bit MSB + 2.5-bit LSB (including 0.5-bit error correction)

◆ MSB is resolved correctly

➢ MSB+LSB → 1000

➢ Correct

MSB: 10

LSB:    000

1000

0V

1V

00

10

11

0.25V

0.5V

0.75V

LSB=000

0.5 V

0.75V

0.625V

0.6875V

0.5625V
000

001

010

011

0.52V

111

100

(2's complement of -1)
MSB=10

01 

0.8125V

0.4375V

0.52V
(Correct)Input voltage

= 0.52V 
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Error Correction Example of Two-Step ADC (Cont.)

⚫ 2-bit MSB + 2.5-bit LSB (including 0.5-bit error correction)

◆ MSB is resolved wrongly

➢ MSB+LSB → 1000

➢ Still correct

0V

1V

00

10

11

0.25V

0.5V

0.75V

LSB=100

0.25V

0.50V

0.375V

0. 4375V

0. 3125V
000

001

010

011

0.52V

111

100

(2's complement of -1)
MSB=01

01 (Wrong)

0.5625V

0. 1875V

0.52V

MSB: 01

LSB:    100

1000

Input voltage

= 0.52V 
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Algorithmic(or cyclic)ADCs

⚫ A successive approximation converter halves 

the reference voltage in each cycle, an 

algorithm converter doubles the error voltage 

while leaving the reference voltage 

unchanged

⚫ Flow graph

⚫ Block diagram

◆ Requires a small amount of analog 

circuitry because it repeatedly used the 

same circuitry to perform its conversion 

cyclically in time

◆ Sample-and-hold amplifier (SHA)

◆ Multiplying DAC (MDAC) 

➢ Two clock cycles 

➢ Rely on capacitor matching

Start

Sample V=Vin, i=1

V>0

bi=1 bi=0

i→i+1

i>N

Stop

)4/VV(2V ref−→ )4/VV(2V ref+→

No

Signed input

Yes

No

Yes
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⚫ 1-bit/cycle

⚫ Input (Vin) range :

SHA

bi

Vi Vi+1
X2

Vin

Sub-cycle

2,3,…,N

Sub-cycle

1 bi=1 bi=0

Vref

4

Vref

4

MDAC

Shift register

1-bit

N-bit

Digital Out

Algorithmic(or cyclic)ADCs (Cont.)

refref V
2

1
~V

2

1
+−
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Pipelined ADC

⚫ The two-step ADC architecture can be generalized to multiple stages

e.g. 1-bit/stage, 2-bit/stage without digital error correction

1.5-bit/stage, 2.5-bit/stage with digital error correction

In general, 1.5-bit/stage is the optimum with respect to speed, area and 

power.

⚫ Current state-of-art is 12 to 16 bits for pipelined ADC with digital error 

correction at hundreds of MHz.
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Pipelined ADC (Cont.)

⚫ Once the stage #1 completes its work, it does not sit idle while the 

remaining lower bits are found, but immediately starts work on the next 

input sample.

⚫ Conversion rate equals clock rate

⚫ It takes N clock cycles for each input signal (latency is N)

⚫ Circuit complexity is proportional to N

⚫ Small area

Vin(k)

Vin(k+1)

Vin(k-1)

Vin(k)

Vin(k+2) Vin(k+1)

Vin(k-2)

Vin(k-1)

Vin(k)

Stage #1 Stage #2 Stage #3

Vin(k)

Vin(k+1)

Vin(k+2)

T
im

e
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1-Bit/Stage Pipelined ADC

⚫ Block diagram (no digital error correction)

Stage

#1

Stage

#2

Stage

#N-1

Stage

#N

1-bit 1-bit 1-bit 1-bit

Vin

D1

Q1

DN-2

QN-2

DN-1

QN-1

D1

Q1

DN-2

QN-2

D1

Q1

b1 b2 bN-1 bN

N
-1

 b
it

 s
h

if
t 

re
g

is
te

r
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1-Bit/Stage Pipelined ADC (Cont.)

◆ Each stage contains an S/H to store the input signal. This S/H 

allows the proceeding stage to be immediately used to process its 

next input signal before the succeeding stage has finished.

◆ For a signed conversion, the input is compared to 0 V.

If Vin > 0, Vout = 2Vin - (Vref/2) = 2(Vin - (Vref/4)) and Bout = 1.

Otherwise, Vout = 2Vin + (Vref/2), and Bout = 0

◆ The ith S/H can be incorporated into the (i-1)th MDAC except for the 

first stage of the pipelined ADC

(Operational principle of MDAC, p.12-47~p.12-48)

refV2
1

refV2
1−

refV2
1−

refV2
1

iV

1=ib0=ib

S/H

bi

Vi Vi+1X2

bi=1 bi=0

Vref

4

Vref

4

MDAC

Vi+1
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1-Bit/Stage Pipelined ADC (Cont.)

◆ Opamp sharing → Power and area saving

Opamps are shared between two consecutive stages

Cs_i+1

Cf_i+1

+Vref /2
Cs_i

Cf_i

- Vref /2
Vi+1

bi=1

bi=0

Stage #i Stage #i+1

Next phase

Ai

Cs_i

Cf_i

+Vref /2
Cs_i+1

Cf_i+1

- Vref /2
Vi

bi+1=1

bi+1=0

Stage #i+1Stage #i

Ai Vi+2

The same opamp share with stage #i and stage #i+1
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1-Bit/Stage Pipelined ADC (Cont.)

⚫ Any comparator offset results in irreparable errors

◆ 3-Bit Pipelined ADC for an example

◆ Comparator of stage #1 with offset = 1/8Vref

◆ For V1=1/16Vref, the digital out is (011)2, but the correct digital out is 

(100)2

⚫ 1.5-bit/stage with digital error correction are more robust to comparator 

offset

refV2
1

refV2
1−

refV2
1−

refV2
1

2V

1V

refV8
1

11 =b01 =b

S/H

b1

V1

V2

X2

b1=1 b1=0

Vref

4

Vref

4

MDAC
Stage #1

Vref

8
Offset=

V3

b2 b3

Ideal

Stage #2

Ideal

Stage #3
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1.5-Bit/Stage Pipelined ADC

⚫ Block diagram (with digital error correction)

Stage 

#1

1.5-bit

Stage 

#2

1.5-bit

Stage 

#N-2

1.5-bit

2-bit

Flash

A/D

b1,1b1,0 b2,1b2,0 bN-2,1bN-2,0

D1

Q1

D1

Q1

D1

Q1

DN-3

QN-3

DN-2

QN-2

DN-3

QN-3

Vin=V1

V2 VN-1

+

2
-2

2
-3

2
-N+1

2
-N+1

2
-N

Digital error 

correction

b1

b2

bN

bN-1

bN-2

N
-2

-d
ee

p
 s

h
if

te
r 

re
g
is

te
r

bN-1,0bN-1,1
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⚫ A 1.5-bit pipelined converter stage

◆ Adding a second comparator to each stage → 1.5-bit/stage

◆ 3-level quantization of each stage input

refV2
1

refV2
1−

1+iV

iV

0

0

0,

1,

=

=

i

i

b

b

refV4
1

refV4
1−

8

refV
−

8

refV

2

refV

2

refV
−

1

0

0,

1,

=

=

i

i

b

b

1

1

0,

1,

=

=

i

i

b

b

1.5-Bit/Stage Pipelined ADC (Cont.)

Note : ( )
4

11,0,,
ref

iixi

V
bbV −+=

S/HVi X2

bi,1=1

bi,0=1

Vref

4

Vref

4

MDAC

Vref

8

Vref

8

Vi,x

Vi+1

bi,1

bi,0

bi,1=0

bi,0=1

bi,1=0

bi,0=0
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⚫ Input-output relationship with comparator offsets

◆ It will introduce an error of ± Vref /4 into Vi,x

(it is reflected in bi,0 and bi,1)

◆ It also result in an error of ± Vref /2 in Vi+1

(it is captured by the output bits of subsequent stages)

◆ When all bits are combined by the digital error correction, the errors 

cancel (as long as |ε0| < Vref/8 and |ε1| < Vref/8)
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1.5-Bit/Stage Pipelined ADC (Cont.)
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V2 Ideal 2-bit 
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Example : 3-bit pipelined ADC
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Multi-Bit/Stage Pipelined ADC

⚫ Implementation

◆ Digital error correction can be added similar to that for a two-step 

ADC.

◆ Major limitation on the accuracy is the gain amplifier, especially in 

the first few stages.

➢ Gain is taken smaller for the first stages which makes high-

speed amplifier design considerably easier.

◆ MIM capacitors are sued to implement switched-capacitor of S/H 

gain amplifier.

S/HVi

k bits

2
k Vi+1

Vi,xk-bit

Sub-A/D

k-bit

Sub-D/A
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Issues in Designing Pipelined ADC 

⚫ Comparator offset

◆ Greatly relaxed by using digital error correction
Reference  : S. H. Lewis and P. R. Gray, “A pipelined 5-Msamples/s 9-bit analog-to-digital converter,” IEEE J. 

Solid-State Circuits, vol. 22, no. 6, pp. 954–961, Dec. 1987 

⚫ Finite opamp gain

◆ Cascading gain stages/gain- boosting techniques

➢ Complex circuit structures

➢ Increase power consumption 

◆ Correlated double sampling (CDS) technique

➢ For the same specification of resolution, the required gain in dB 

could be halved
Reference  : J. Li and U.-K. Moon, “A1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS 

technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1468–1476, Sep. 2004 

◆ Correlated level shifting (CLS) technique

➢ Rail-to-rail output swing and largely relax gain requirement
Reference : B. R. Gregoire, U. Moon, "An over-60 dB true rail-to-rail performance using correlated level 

shifting and an opamp with only 30 dB loop gain", IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2620-

2630, Dec. 2008.



Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan                                                                 郭泰豪, Analog IC Design, 202312-74

Issues in Designing Pipelined ADC (Cont.) 

⚫ Capacitor mismatch

◆ Larger capacitor sizes 

➢ Increase the cost and power of capacitive loads and driving 

circuits

◆ Capacitor swapping

➢ Capacitor error averaging (CEA)
Reference  : Y. Chiu, “Inherently linear capacitor error-averaging techniques for pipelined A/D conversion,” 

IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 229–232, Mar. 2000 

➢ Commutated Feedback Capacitor Switching (CFCS)
Reference  : P. C. Yu and H.-S. Lee, “A 2.5-V,12-b, 5-Msample/s pipelined CMOS ADC,” IEEE J. Solid-

State Circuits, vol. 31, no. 12, pp. 1854–1861, Dec. 1996 

➢ Random feedback-capacitor interchanging (RFCI)

➢ Averaging RFCI (ARFCI)
Reference  : C.-H. Kuo and T.-H Kuo, “Capacitor-swapping cyclic A/D conversion techniques with reduced 

mismatch sensitivity,” IEEE Trans. Circuits Syst. II, vol. 55, no. 12, pp. 1219–1223, Dec. 2008

◆ Digital calibration 
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Time-Interleaved ADC

⚫ Ultra-high speed is possible using this approach

⚫ Operating many ADCs in parallel
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N-bit A/D

S/H Dig.

mux
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Time-Interleaved ADC (Cont.)

⚫ The four ADCs operate at one-quarter the rate of the input sampling 

frequency .

⚫ The input S/H making use of 0 is critical, while the remaining four S/H 

converters can have considerable jitter since the signal is already 

sampled at that point.

Sometimes, the input S/H is realized in different technology, such as 

GaAs, while the S/H circuits could be realized in silicon.

⚫ It is also essential that the channels are extremely well matched, as 

mismatches will produce tones.

Such nonideal behavior can be disastrous for many applications since 

the tone may reside well within the frequency of interest.
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⚫ Mismatch effect for an m-channels time-interleaved ADC

◆ Offset mismatch → tones at fs/m 

➢ They are independent of input frequency or amplitude

(they will be present even if the input is zero)

◆ Gain mismatch → tones at kfs/m± fin for integers k

➢ Their frequency and amplitude depends upon input frequency 

and amplitude

⚫ Output spectrum of a 4-channels time-interleaved ADC
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4
+fin
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2
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2
fin0

Input 
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dc offset
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mismatch
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Time-Interleaved ADC (Cont.)
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Time-Interleaved ADC (Cont.)

⚫ Calibration of effect mismatch αai and gain mismatch βai

◆ Initially, αdi=0 and βdi=0  

◆ Vin=0 → obtain αdi≈ αai

◆ Vin= Vref → obtain βdi≈ βai
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Appendix : Implementation of an 8-bit 

Two-Step (or Subrange) ADC

⚫ Block diagram 
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Appendix : Implementation of an 8-bit 

Two-Step (or Subrange) ADC (Cont.)

⚫ Coarse ADC structure
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Appendix : Implementation of an 8-bit 

Two-Step (or Subrange) ADC (Cont.)

⚫ Fine A/D structure
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Appendix : Implementation of an 8-bit 

Two-Step (or Subrange) ADC (Cont.)

⚫ Subtractor
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Appendix : Implementation of an 8-bit 

Two-Step (or Subrange) ADC (Cont.)

⚫ Input relation between coarse and fine (i.e., residue plot)

1 Vref 2  Vref 3  Vref 4 Vref 5                        14 Vref 15 Vref 16
1        2          3        4                                    14       15

Input Voltage To Coarse ADC (i.e.S/H Output)

Input Voltage To Fine ADC 

(i.e., Subtractor Output)
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Appendix: Folding ADC

⚫ Example2: A 4-bit ADC with a folding rate of four.

◆ The MSB converter would usually be realized by combining some 

folding block signals, such as V1 is used to determine 2MSBs in this 

example.
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Appendix: Folding ADC

⚫ Example3: A 4-bit ADC with a folding rate of four and an interpolate-by-

two technique

◆ Folding + interpolating 

◆ Smaller input loading compared to examples 1 and 2
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Appendix : 1.5b/Stage Pipeline Architecture 
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